Anaerobic Infections of the Abdomen Are Anaerobes now MDROs ?

Ellie JC Goldstein MD Clinical Professor of Medicine David Geffen School of Medicine @ UCLA

Director

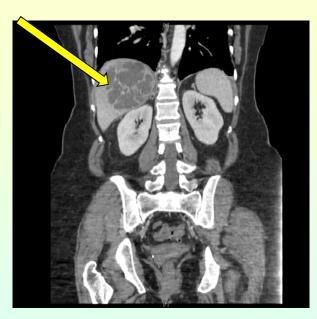
R M Alden Research Laboratory

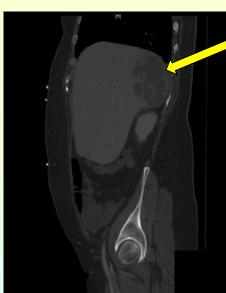
Vancouver 6-1-15

Not a Needle in a Haystack, But a Case of a Needle in a Liver

Ellen Jo Baron, Ph.D., D(ABMM), F(IDSA) Professor Emerita, Pathology Stanford Univ. Med. School

EMERGENCY


Presentation


- 56 y.o. former nurse presented to ED 3/22/12 with dizziness, fever, fatigue, small volume watery diarrhea for last 6 days
- PMH: pulmonary hypertension, CHF, HLD, HTN
- Travel 1 week Cancun in February
- Lives rural NY with dogs & cats; no other animals; drinks from well water
- Differential at this point ?

Clostridium difficile Enteric parasite Enteric bacterial pathogen Viral syndrome

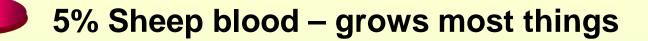
Hospital Day 2

Started on cipro & flagyl

 Septated rim-enhancing posterior rt. hepatic lobe lesion spanning segments VI and VII

Hospital Day 4

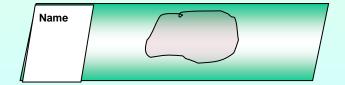
- IR guided drainage of abscess
- Courier delivers
 sample to Micro Lab



Additional differential at this point ?

E. histolytica liver abscess Hydatid disease Pyogenic liver abscess Disseminated fungal disease

Sample is inoculated onto various media


- MacConkey grows gram-negative rods
 - **Chocolate grows Haemophilus + ALL**
- **Anaerobic BBE (for Bacteroides)**
 - Anaerobic Brucella

Anaerobic LKV

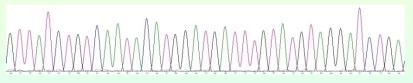
Anaerobic CM broth

And onto slide for Gram stain

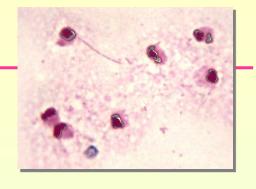
Laboratory Results

- HCV, HAV, HIV antibodies negative
- Malaria preparations negative
- Dengue serology negative
- Entamoeba histolytica ab negative
- Echinococcus ab negative
- Urine *Histoplasma capsulatum* ab negative
- Blood cultures x 2 no growth
- Clostridium difficile PCR negative

Laboratory Results continued


- Stool O&P negative x 2; Stool WBCs negative
- Giardia antigen negative
- Stool culture negative for enteric pathogens
- Urine culture 25,000 cfu/ml mixed skin flora
- Helicobacter pylori stool antigen negative
- Blood cultures negative x 4 more sets
- Abscess aspirate cultures negative
- Gram stain positive for rare GNRs

Hospital day 6


- Gram stain positive for GNRs
- Cultures negative so far
- 16s sequencing performed on original aspirate material (saved in refrig)

Final identification Day 7

Fusobacterium nucleatum

Epilogue

- Meds changed to meropenem
- Patient had 7 crowns and 1 bridge 1 yr. ago
- Normal colonoscopy 1 yr. ago
- Day 8 CT showed residual abscess
- Day 9 IR place larger drain with tissue Plasminogen Activator
- Day 15 patient discharged on P.O. flagyl & cipro.
- Recommended another colonoscopy.

Oral cavity and upper respiratory passages Prevotella sp Porphyromonas spp Fusobacterium nucleatum Peptostreptococcus Actinomyces Eybacterium

Female genital tract Lactobacillus Peptostreptococcus Pigmented Bacteroides Other Bacteroides Eubacterium Colon Bacteroides fragilis group Peptostreptococcus Clostridium sp Eubacterium Bifidobacterium Fusobacterium

Predominate anaerobes of the normal flora

Bacteroides Reclassification

Bacteroides

Prevotella

Other

<u>B fragilis group</u> *B fragilis B thetaiotaomicron B ovatus B vulgatus P (B) distasonis*

Porphyromonas

Bacteroides			Parabacteroides
acidifaciens	fluxus	propionicifaciens	distasonis ²
barnesiae	fragilis ^{1,2}	pyogenes	goldsteinii
caccae ²	galacturonicus	rodentium	gordonii
cellulosilyticus	gallinarium	salanitronis	johnsonii
chinchillae	graminisolvens	salyersiae	merdae ²
clarus	helcogenes	sartorii	
coagulans	heparinolyticus ³	stercoris ²	
coprocola	intestinalis	thetaiotaomicron ²	
coprophilus	massiliensis	uniformis ²	
coprosuis	nordii	vulgatus ²	
dorei	oleiciplenus	xylanisolvens	
eggerthii²	ovatus ²	xylanolyticus	
faecis	paurosaccharolyticus	zoogleoformans ³	
finegoldii	plebeius		

A list of the related species comprising the 'B. fragilis group' at present

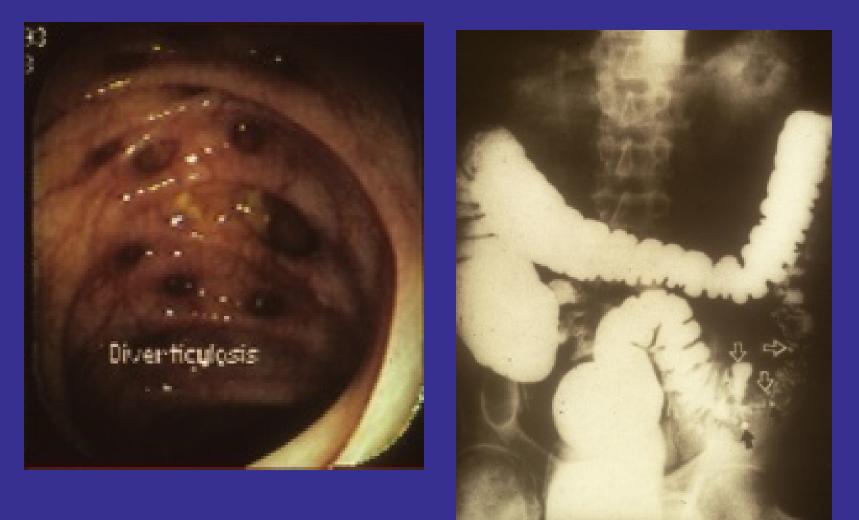
¹The main pathogenic species of *Bacteroides* that were included in an antibiotic susceptibility study and are most frequently isolated from clinical specimens.

²The 10 *Bacteroides* species earlier comprising the *B. fragilis* group.

³Now in the genus *Prevotella*.

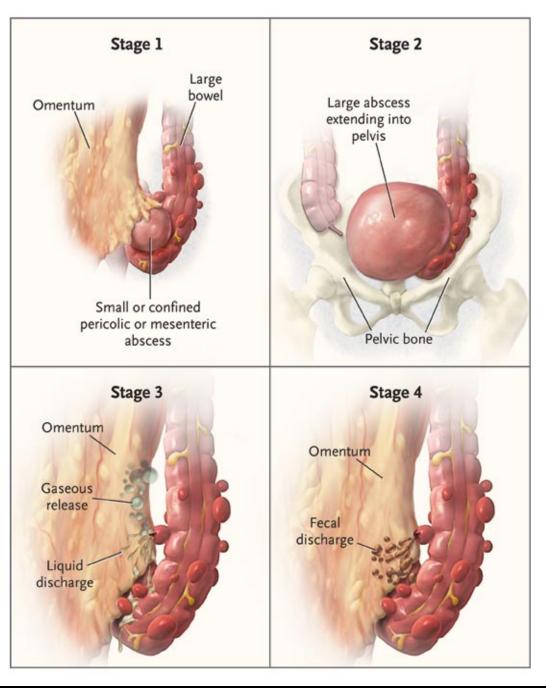
Sóki J et al. World J Clin Infect Dis 2013 February 25; 3(1): 1-12

Bacteroides and Parabacteroides taxonomy: incidence at St. John's Med Ctr 2006-2011


		<u>Species (N=559)</u>	no.	<u>% total</u>
		B. caccae	28	5.0
		B. cellulosilyticus	3	0.5
		P. distasonis	23	4.1
-		B. dorei	1	0.2
		B. eggerthii	1	0.2
		B. fragilis *	211	37.7
		P. goldsteinii	10	1.8
		P. gordonii	2	0.4 * Total 67.9%
		B. intestinalis	2	0.4
		P. johnsonii	5	0.9
		B. massiliensis	2	0.4
		P. merdae	7	1.3
		B. nordii	3	0.5
	- e -	B. ovatus *	69	12.3
		B. salyersiae	4	0.7
		B. stercoris	3	0.5
		B. thetaiotaomicron *	100	17.9
	- e -	B. uniformis	35	6.3
	- e -	B. vulgatus	49	8.8
	- e -	B. xylanisolvens	1	0.2

Citron DM. Premolecular identification: Ignorance was bliss? Anaerobe 18:189; 2012

Approved list of names vs species in kit databases


Organisms	Euzeby List (165)	RapID ANA II	Rapid 32A
Bacteroides	20	10	10
Prevotella	42	11	9
Clostridia	203	24	22
Actinomyces	45	7	5
GP cocci	20	9	5

Diverticulosis Perforated Diverticulitis

Diverticulitis

- Western society Common
 - 5-10 % <45 years old
 - ->80% >80 years old
 - Men = Women
 - Sigmoid and descending colon 90%
- 20% with pts with diverticulosis develop symptoms
- 130,000 US hospitalizations annually
- 20% of symptomatic pts < 50 years old
 More severe in younger patients vs delay dx ?

<u>Stage</u> Mortality Stage 1&2 < 5% Confined **Stage 3 13% Perforation with** peritonitis **Stage 4** 45% **Free rupture**

Hinchey Classification Scheme

Jacobs D. N Engl J Med 2007;357:2057-2066

Abdominal Pain Case (1)

64 year old cardiologist

- Went to a medical conference in San Francisco Developed hard stools
- While doing an angioplasty he had the sudden onset of abdominal pain referred to the penis
 - History Levofloxacin & metronidazole intolerance
 - **MSSA** carrier

PE: Severe left sided abdominal pain and <u>rebound</u> WBC 19,400 (88% PMNs, 7 Bands) Hct. 39%, Plt. 149K CT Abdomen/Pelvis: No Kidney Stone

Sigmoid wall thickening

Therapy: Ertapenem \rightarrow Imipenem 500 mg q 6 H Initial improvement x 48 h then <u>deteriorates</u>

Abdominal Pain Case (2)

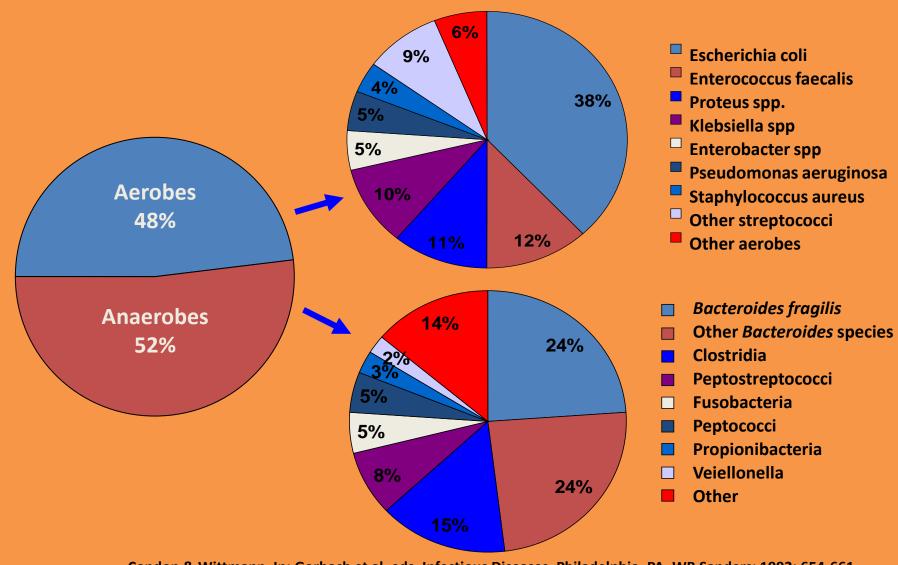
Repeat CT Scan: micro perforation & extraluminal pericolonic air

Develops rapid atrial fibrillation/flutter \rightarrow cardioversion

- OR: Laparoscopic colectomy with end colostomy & Hartman pouch; HARD stool at site of perforation
 - Ureteral stent placed
 - Perforated diverticulitis with pelvic abscess

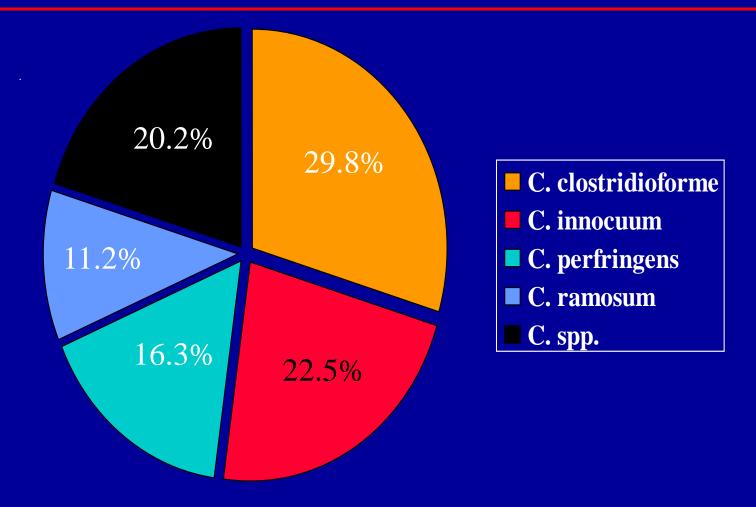
Culture: E coli R- Levo, Ampicillin, N ferm GNR S- all usual (Not Pseud) E. faecium lactobacilli B fragilis <u>R- FOX, Imipenem, Pip-Tazo</u> C. perfringens Clostridium-other

Preoperative Surgical Consent



1935 MGM.

300,000 cases/year US Lifetime incidence 7-14%



Intra-Abdominal Infections Pathogens

Condon & Wittmann. In: Gorbach et al, eds. Infectious Diseases. Philadelphia, PA. WB Sanders: 1992: 654-661 Goldstein E J. and Snydman D R. J Antimicrob Chemother 2004; 53, Suppl. S2, ii29–ii36.

Clostridium Species from Intra-Abdominal Infections

Goldstein, EJC et. al. AAC 2000, 44: 2389-94

Acute Appendicitis <u>Appendectomy</u> or <u>Antibiotics First</u> Common Features of Randomized Clinical Trials of "Antibiotics First" Regimens.

Table 2. Common Features of Randomized Clinical Trials of "Antibiotics First" Regimens.

- Eligible patients are consenting adults who are not pregnant, do not have compromised immune function, and do not have certain implantable devices.
- Patients have no evidence of abscess or perforation on imaging.
- Patients have no evidence of sepsis or disseminated peritonitis on clinical examination.
- Patients are admitted to a hospital, and intravenous antibiotics are administered for 48 hours.
- Patients are assessed at intervals of 6–12 hours for progression of symptoms or development of sepsis.
- Patients begin oral intake of food; when pain is well controlled, patients are discharged home with 7 days of oral antibiotics.
- A patient proceeds to surgery if sepsis or shock, worsening fever, or disseminated peritonitis develops or if by 48 hours the patient's pain or elevated white-cell count is not reduced or the patient is unable to eat.

Flum DR. N Engl J Med 2015;372:1937-1943

Appendectomy vs Abx First

In US, the usual treatment uncomplicated appendicitis is a prompt appendectomy.

• The laparoscopic preferred to the open approach (owing to a lower incidence of surgical-site infection and a faster return for the patient to usual activities)

In <u>Europe</u> antibiotics-first strategy is an alternative particularly in a patient who has had prior surgical complications and has a strong preference for avoiding appendectomy.

 In European randomized trials It was not associated with an increased risk of perforation (2 studies did) or a higher rate of complications; however, as many as half the patients so treated will have early treatment failures, and all have a risk of recurrent appendicitis (10-37%) may ultimately require Appx

Diabetic Foot Infections

U	US Multi-Center Trial				
45	54 pretreatm	nent specimens			
43	33 patients;	427 (+) cultures			
•	83.8%	Polymicrobial			
•	48%	Aerobes Only			
•	43.7%	Mixed			
Aerobes/Anaerobes					
•	1.3%	Anaerobes only			

Bacteriology				
1145 aerobes	2.7/culture			
462 anaerobes	2.3/culture			
S aureus	14.3%			
MRSA	4.4%			
Anaerobe GP coc	ci 45.2%			
F magna 24.	4%			
Prevotella	13.6%			
<u>B fragilis gp</u>	10.2%			

Citron DM, et al. J Clin Micrbiol. 2007;45:2819-2828.

Differences in Distribution & Antimicrobial Susceptibility of Anaerobes Isolated from IAIs versus DFIs

<u>% Resistant</u>

Organism/Antimicrobial Agent	MIC breakpoint	IAI	DF			
Bacteroides fragilis group spp.	Bacteroides fragilis group spp.					
amoxicillin-clavulanate	>4	8.8	19.6			
cefoxitin	>16	30.5	31.4			
clindamycin	>2	35.3	35.4			
moxifloxacin	>2	21.3	43.1			
Clostridium spp.						
amoxicillin-clavulanate	>4	1.9	0			
cefoxitin	>16	41.1	0.5			
clindamycin	>2	16.5	21.0			
moxifloxacin Claros, Citron, Goldstein et al Dia	>2 g. Micro Inf. Dis 2013	<mark>32.3</mark> ;76:546	0			

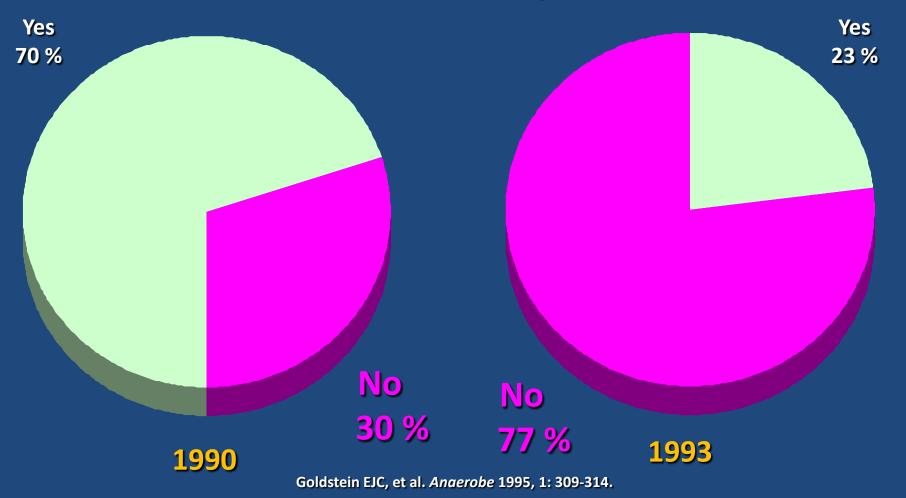
Cephamiracle 3rd Generation Gorillamycin **1st Generation** Cephawonderful Monobactams Penems Oxycephamycins Macrolides Thienamycins Tetracyclines Carbapenems Penicillins **2nd Generation** Aminoglycosides Quinolones Penams

Trends in the prevalence of genotypically ESBL-positive isolates of *E. coli* from IAIs in the United States in 2009 to 2013. 29 Hospitals in 17 states

	2009	2010	2011	2012	2013
	6.5	6.5	8.6	5.5	8.0
HA	7.2	9.6	9.4	6.5	8.8
CA	4.3	3.5	8.0	4.7	7.3

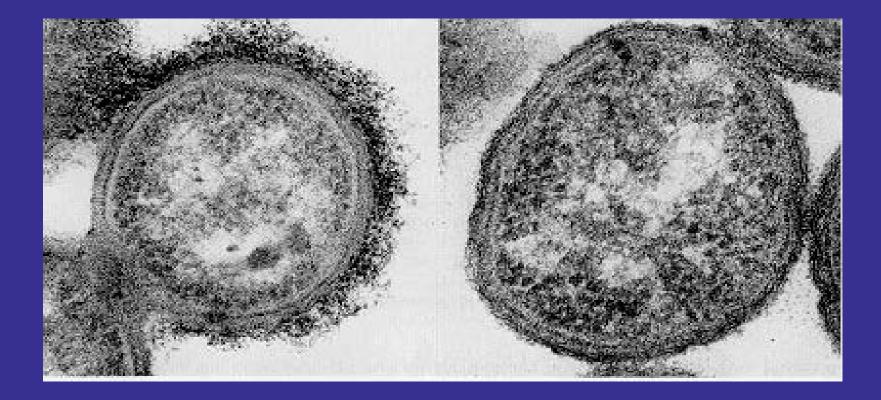
Lob, SH, et al. AAC. 2015;59(6):3036–10.

Carry & Blair Transport



Anaerobic Susceptibility Testing

US National Survey


Drugs Tested vs. Anaerobes

B-lactamase only Penicillin/Ampicillin Amp-sulbactam Clindamycin **Metronidazole** Cefoxitin **Chloramphenicol Pip-tazobactam** Imipenem/Meropenem 29% so 40% test 83% 83% 100% 100% 100% 67% 50% 33%/17%

Goldstein, Citron, Goldman et al. Anaerobe 2008, 14:68

Bacteroides fragilis capsule

Rodloff et al., ZAC 4, 1985

Bacteremia a B fra	& Mortality gilis group	due to
	<u>Chow & Guze</u> (1969-72)	<u>Brook</u> (1973-85)
B fragilis	5/16 (31%)	28/115 (24%)
B thetaiotaomicron	3/3 (100%)	8/31 (38%)
B vulgatus	3/8 (37%)	2/5 (40%)
B ovatus	0/3 (0%)	1/5 (20%)
P (B) distasonis	1/2 (50%) 12/32 (38%)	1/2 (50%) 40/148 (27%)

Chow Medicine 53-93-126, 1974 Brook J Clin Micro 1988

B fragilis bacteremia

<u>Sources</u>

- Abdomen 69%
- Soft tissue 16%
- Pelvic 5%
- Pulmonary 4%
- Other 7%

Mortality

Matched pair study

1983-93

- Mortality 28% vs. 9%
- Attributable 19.3%
- Risk ratio 3.2
- Increased LOS 18 days

Redondo CID 1985

Relationship of Treatment with											
Inactive Therapy and Clinical											
utcom	e										
Active	Inactive	Fail (%)									
18	9	(27%)									
63	2	(3%)									
	erapy a outcom Active 18	erapy and Cli utcome Active Inactive 18 9									

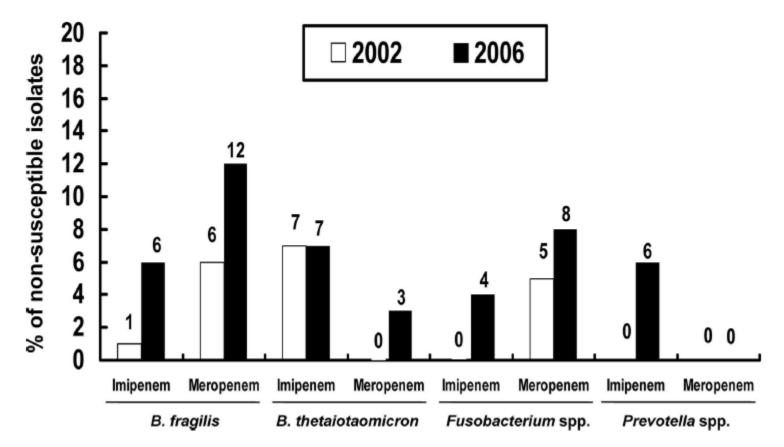
p = 0.002

2010 SIS/IDSA Guidelines Empiric Therapy- Complicated IAIs

Type of therapy	Agents for mild to moderate infections	Agents for high-severity infections
Single agent		
Beta-lactam/beta- lactamase inhibitor combinations	(X Amp/sulbactam X) (X Cefotetan X) Ticarcillin/clavulanic acid	Piperacillin/tazobactam
Carbapenems Other	Ertapenem Tigecycline	Imipenem/cilastatin Meropenem Doripenem
Combination regimens		
Cephalosporin-based	Cefazolin or cefuroxime + metronidazole (X clindamycin X)	3rd/4th generation agents + metronidazole
Fluoroquinolone-based	Ciprofloxacin, levofloxacin, each + metronidazole moxifloxacin	Ciprofloxacin + metronidazole
Monobactam-based		Aztreonam + MTZ +Vanco

Solomkin JS, et al. Clin Infect Dis 2010;50:133-64

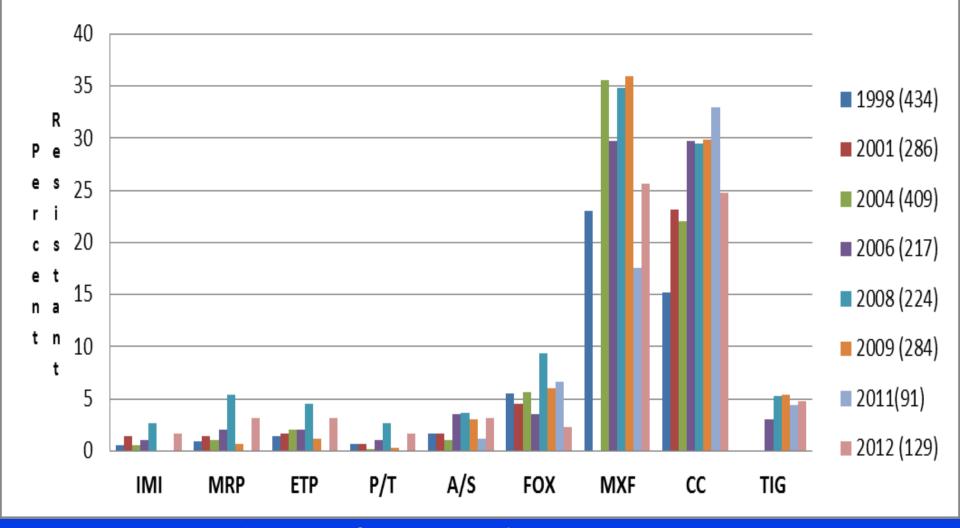
Trial of Short Course Abx in cIAI


518 Patients with Adequate source control
(52.8 yo; 56% male; 75-80% white)
Abx +2 D resolution of fever, ileus, leukocytosis VS.
Fixed course 4+1/- 1 Day abx

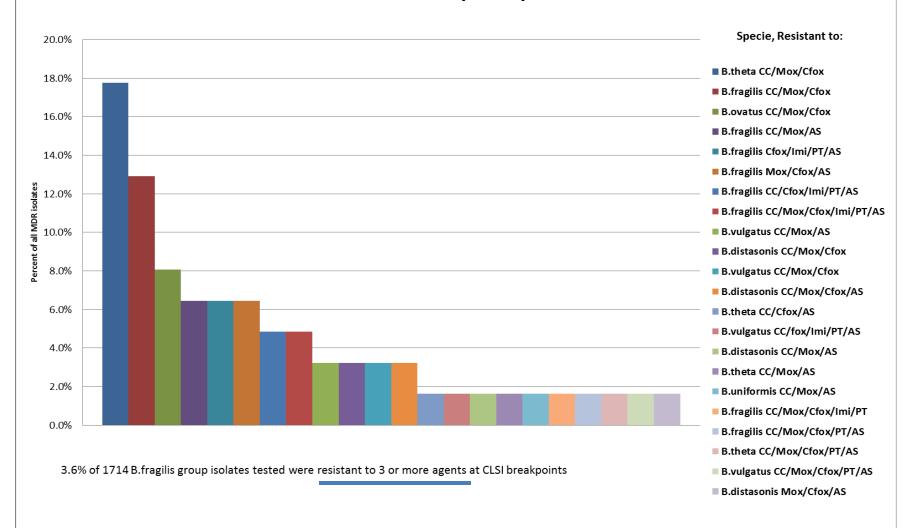
	Long	Short
Abx duration	8 days	4 days
Surgical Site Inf	8.8%	6.6%
Recurrent IAI	13.8%	15.6%
Resistant Pathogen	3.5%	2.3%
C difficile Inf	1.2%	1.9%

Sawyer RG et al NEJM 372:1996, May 21 2015

IDSA IAI Guidelines 2016 Issues


Most studies are Appx (60%) **Duration of Therapy Resistance rates** - MRSA - ESBLs **CLSI vs EUCAST Breakpoints Old Agents/ Old Studies New Agents** Lack of Clinical Outcome Data Differences in rates of non-susceptibility to imipenem and meropenem for selected clinical isolates of anaerobes isolated between 2002 and 2006 at National Taiwan University Hospital.

[[]number of isolates above the bars.]


```
Chia-Ying, L., et al. AAC. 52(9):3161
```

Variation in Resistance by Species: US National Surveillance: *B.fragilis*

3.6% were resistant to > 3 drugs Snydman D et al. ICAAC 2014- submitted AAC 2015

B. fragilis group Isolates 2008-2012 MDR (n=62)

Percent Resistance of other Antibiotics vs *B. fragilis* in Germany (2007), Spain, Europe and Belgium

	Germany	Spa	in *	Europe	Belgium		
		(08)	(12)				
Moxifloxacin	13.9	25	NT	14	30		
Tigecycline	NT	6.5	NT	1.8	NT		
Clindamycin	22.7	47.9	45	28.5	23		
Metro	0	0	<u>6.3</u>	0.5	0		

Seifert H, et al. JAC 2010; 65: 2405-10; Betriu C, et al AAC 2008; 52:2686-90; Nagy E, et al. Clin Micro and Infection 2011; 17:371-9. Trevino M, et al. Anaerobe 2012;18:37-43. Weybo I, et al. JAC 2014; 69: 155-61

Resistance Genes in Spanish Study of Carbapenem Resistant Bacteroides

- 6 carbapenemase producing strains showed *cfi*A genes
- 5 B. fragilis, 1 P. distasonis
- All carbapenemase producing isolates had multiple drug resistances, including some to piperacillintazobactam (4), clindamycin (3), cefoxitin (4), metronidazole (1) and tigecycline (2)
- Clonally unrelated

Metronidazole Resistant B fragilis

- 206 human isolates from UK * (2004)
- 50/206 (24%) + *nim* gene (A-F exist)
 - MICs 1.5->256 ug/ml
- 24 of these (11.6% total) MIC >16 ug/ml
- 10/26 with MICs
 8 had slow growing subpopulations with MICs 8->256 ug/ml
- Conclusions: *nim* genes presence does not always confer resistance

Other mechanisms of resistance exist

-Overexpression of a DNA repair protein (RecA) increases Mtz resistance **

- Efflux Pumps ***
- Gal & Brazier JAC 2004;54:109 ** Steffens LS et al. Res Microbio 2010;161:346
- *** Wexler H Anaerobe 2012; 18:200

<i>Nim</i> gene type	Carrying genetic element	Activating IS	No. of isolates ¹		
nimA	pIP417 (7.7 kb)	IS1168	0[02, 4, 5]		
	10 kb uncharacterized plasmid	IS1168	2 ^[02]		
	8.2 kb uncharacterized plasmid	IS614	1 ^[02]		
	chromosomal	IS1168 or unknown	3 ^[02]		
	unknown	IS1168	2 ^[5]		
	unknown	IS1169	1[6]		
nimB	chromosomal	IS1168 or IS612 or IS614	8[02,4]		
	unknown	IS1168	3[6]		
nimC	pIP419 (0 kb)	IS1170	4 ^[5]		
	chromosomal	IS1170	2 ^[02]		
	unknown	IS1170	$2^{[63, 6]}$		
nimD	pIP421 (7.3 kb)	IS1169	1[02,7]		
	chromosomal	unknown	1 ^[02]		
	unknown	IS1169	6 ^[6]		
nimE	pBF388c	ISBf6	5[02,8]		
	(pWAL6 0, 8.3 kb)				
nimF	chromosomal	unknown	[6]		
nimG	unknown	unknown	[63]		
nimH	unknown	unknown	2		

The 5-nitroimidazole resistance *nim* genes of interest for *Bacteroides*

Sóki J et al. World J Clin Infect Dis 2013 February 25; 3(1): 1-12

Clinical Metronidazole Resistance

<u>Reference</u>	<u>Year</u>	<u>Country</u>	Isolate Source	Ν	<u>/Itz Tx</u>
Turner	(95)	UK	B fragilis	Blood	?
Caudhry	(01)	India B	fragilis	Blood	?
Schapiro	(04)	US	B fragilis	Ankle	-
Wareham	(05)	UK	B fragilis	Blood	+
Katsandri	(06)	Greece	B vulgatus	Abd	+
Hecht	(07)	US	B fragilis	Abd	+
Sherwood	(11)	US	B fragilis	Wound	+
Kalapila	(13)	US	B fragilis	Blood/A	bdomen +

Several other unpublished cases are known to have occurred

Goldstein, Citron & Hecht in Antimicrobial Resistance 2008; Sherwood et al. Anaerobe 2011; MMWR 62:No34; 694,2013

The insertion sequence elements involved in the up-regulation of antibiotic resistance genes in *Bacteroides*

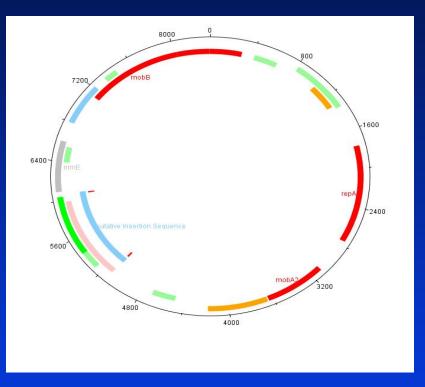
IS Family ¹	Group ^a	IS2	Activated genes
IS4	ISPepr	IS943	cfiA
		ISBf8	cfxA
IS5	IS5	IS1186 (IS1168)	cfxA, cfiA, nimA, nimB
		IS1169	cfiA, nimA, nimD
	IS1031	ISBf6	nimE
IS21	_	ISBf1	cepA
IS982	_	IS1187	cfiA
IS31380	IS942	IS942	cfiA
		IS1170	nimC
		IS612	cfiA, nimB
		IS613	cfiA
		IS614	cfxA, cfiA, nimB
		IS615	cfiA
	-		
		IS1188	cfiA
		IS4351	ermF, cfiA
		IS616	cfiA

¹The IS families and the subgroups within them (taken from IS Finder)77;

- indicates no further classification;

²The species of IS elements activating the resistance genes of *Bacteroides* spp.; the mosaics and isoforms are not indicated. IS: Insertion sequence.

Sóki J et al. World J Clin Infect Dis 2013 February 25; 3(1): 1-12


Efflux mechanisms confer a low to moderate level of intrinsic resistance

- Low level resistance allows the organisms to survive long enough to acquire mutations that result in high level resistance
- Concomitant expression of several pumps can lead to high level resistance phenotypes
- Efflux may cooperate with other mechanisms to confer not only high level but broad spectrum resistance
- Efflux pumps may be induced by a wide variety of stressors, including O2, bile, antimicrobial agents, and a wide variety of commonly used cleansers and microbicides.

B fragilis plasmid (8.8 kb) Resistance to Carbapenems & Metronidazole

Rings: outer→inner

1-DNA co-ordinates2-forward strand codingsequences3-inner strand coding4-Insertion sequence ISBf6

Class III BFP35 plasmid described by Soki, et al (Plasmid 63:86-97, 2009); isolate also contained 5.5 kb pHAG (W1) plasmid, *cfi*A gene and *nim*E gene. Sherwood et al. Anaerobe (2011)

Recent Worldwide Surveys of *B fragilis* Susceptibility & Resistance

- Europe: Eitel Z et al Anaerobe 2013;21:43
 - 161 strains 2008-2009 *cepA* in 70.8% but its presence did <u>not correlate</u> with ampicillin MIC values
- Argentina: Canagia L et al AAC 2012;56:1309
 - 363 isolates 17 Centers 2006-2009
 - 1.1-2.3% resistance to a carbapenem 8/23 isolates cfi +
- Canada: Karlowsky et al AAC 2012;56:124
 - 387 isolates 9 Centers 2010-2011
 - 8% [®] Ertapenem; 2.3% Imipenem
 - One B. thetaiotaomicron ® metronidazole
 - Two B fragilis [®] Imipenem & Pip-Tazo
- Japan: Tran C et al J Infect Chemo 2013;19:279
 - 702 isolates from 27 medical centers (2010)
 - 2.9% [®] Pip/Tazo & Imipenem
 - IAIs- Resistance genes studied 2 *cfiA* (+) *B fragilis* did <u>not produce</u> the protein product
- Taiwan: Wang et al EJCMID 2014; 33:2041-52 (2008-2010)
 - B fragilis 13.5% [®] Ertapenem
- **Russia:** Shilnikova Anaerobe 2014; epublished doi:10.1016/j.anaerobe.2014.08.003
 - 3 B fragilis [®] metronidazole & Imipenem (2004-2014)

Risk Factors for Resistance to βL/βLIs & Ertapenem in *Bacteroides* sp. Bacteremia 2007-2013

Retrospective case-control study 159 Pts.

- 1,051 Tertiary Care Center (Hopkins)
- Bacteremia associated with
 - Recent surgery
 - Malignancy
 - Immunosuppression
- 16% (26/159) had resistance
 - Amoxicillin clavulanate 11.5%
 - Ertapenem 7.0%
 - Piperacillin/Tazobactam 6.8%

Duration of exposure to βL/βLI was the <u>ONLY</u> independent risk factor

Each additional day of therapy was associated with a 2.5% increased risk of resistance development

Smith JM et al AAC In Press 2015

B fragilis is now an MDRO

79 yo male travels India goes back to Seattle for cancer therapy (MMWR 62:694, 2013) **B. fragilis** Blood & Abdominal fluid [®] Metronidazole, Imipenem, Pip-tazo Steve Jenkins (Cornell, NYC) 15 *B fragilis* isolates over three years (2011-14) [®] Imipenem, Pip-Tazo Michael Jacobs (Case U, Cleveland) (2014) *B fragilis*[®] Imipenem

Bacteroides fragilis

Both a gut commensal and a virulent pathogen

Horizontal Gene Transfer in the GI Tract means "any gene in any bacterium can be mobilized" and transferred

- Regional variation in susceptibilities continues
- Carbapenems and piperacillin/ tazobactam remain the most active *B*lactam agents
- There is a modest trend among carbapenems and other β -lactam agents for increasing resistance over time
- Resistance to clindamycin and moxifloxacin continues to rise from elevated levels seen in the 1990s although the past 2 years have shown modest declines
- **Tigecycline** resistance is increasing
- Rare metronidazole resistance is seen although recent Spanish study is worrisome

Some Take Home Messages on Species and Drug Combinations

- *B. ovatus* more resistant for carbapenems
- *B. vulgatus* more resistant for Pip-tazo
- *P. distasonis* more resistant for Amp-Sulb and Cefoxitin
- B. ovatus and B. uniformis very resistant to moxifloxacin as well as B. vulgatus (> 50%)
- Bacteroides non-fragilis more resistant to tigecycline than fragilis
- Bacteroides fragilis in general more susceptible compared to other species for all drugs

Appendix D. Cumulative Antimicrobial Susceptibility Report for Bacteroides fragilis Group Organisms

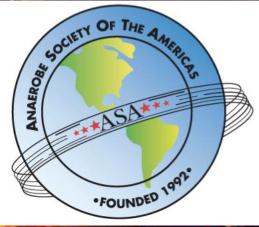
Anaerobic Organisms	Number of Strains		Ampicillin- sulbactam	Dinomoni	raperacium- tazobactam		CEIOXIUI		Ertapenem		Imipenem	-	weropenem	Clindamvcin		Moxifloxacin		Metronidazole ^b	
Percent Susceptible (%S) and Percent Resistant (%R) ^c		%S	%R	%S	%R	%S	%R	%S	%R	%S	%R	%S	%R	%S	%R	%S	%R	%S	%R
Breakpoints in µg/mL		≤8/4	≥ 32/16	≤32/4	≥128/4	≤16	≥64	≤4	≥16	≤4	≥16	≤4	≥16	≤2	≥8	≤2	≥8	≤8	≥32
B. fragilis	872	89	4	98	1	85	6	96	2	98	2	97	2	64	28	53	38	100	0
B. thetaiotaomicron	342	86	3	92	2	32	13	96	2	99	0	99	1	27	56	44	34	100	0
B. ovatus	67	93	2	93	2	37	15	98	0	100	0	100	0	54	39	43	39	100	0
B. vulgatus	70	67	6	100	0	83	4	98	2	98	2	98	2	49	51	43	46	100	0
B. uniformis	60	87	2	93	0	42	13	97	0	100	0	98	0	35	52	35	50	100	0
B. eggerthii	58	95	0	100	0	98	2	100	0	100	0	100	0	29	55	28	55	100	0
Parabacteroides distasonis	111	69	11	91	2	41	16	97	0	100	0	99	0	30	41	54	38	100	0
<i>B. fragilis</i> group without <i>B. fragilis</i>	708	83	4	93	1	40	12	97	1	99	0	99	0	33	42	43	40	100	0
<i>B. fragilis</i> group (all 7 species listed)	1580	86	4	95	2	65	9	97	1	98	1	98	1	50	39	49	39	100	0

Isolates collected from selected US hospitals 1 January 2007 – 31 December 2009^a

^aData were generated from unique isolates from patient specimens submitted to three referral laboratories: Tufts New England Medical Center, Boston, MA; Loyola University Medical Center, Maywood, IL; and R.M. Alden Research Laboratory, Culver City, CA. Testing was performed by the agar dilution method. ^bResistance to metronidazole occurs infrequently.

^cIntermediate category is not shown, but can be derived by subtraction of %S and %R for each antimicrobial agent from %100.

Appendix D Cumulative Susceptibility Report for *Bacteroides fragilis* Group


Resistance Studies on Other Anaerobes (Not *B. fragilis*)

- **Fusobacterium**: clindamycin 20%, moxifloxacin 30%, other studies with no resistance to clindamycin or ampicillin-sulbactam
- **Prevotella**: clindamycin 30%, moxifloxacin 20%, rare metronidazole resistance, in contrast other studies with clindamycin 4%
- **Clostridial species**: clindamycin 20%, moxifloxacin 35%
- Anaerobic Gram positive cocci: moxifloxacin 20%, clindamycin 20%
- Anaerobic Gram positive bacilli: metronidazole 75%, moxifloxacin 7%, clindamycin 15%

Weybo I, et al. JAC 2014; 69:155-6, Veloo ACM, et al. Int J Antimicrob Agents 2012; 40: 450-54

2016 ANAEROBE NASHVILLE JULY 11-14, 2016

www.angerobe.org

