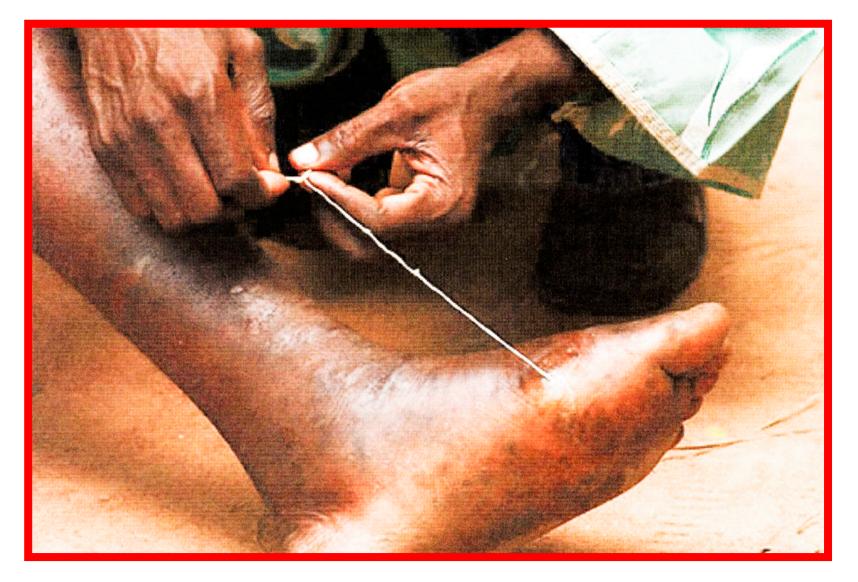
WHAT'S HOT IN CLINICAL INFECTIOUS DISEASE

John G. Bartlett, MD. Emeritus Professor of Medicine, Johns Hopkins Univ School of Medicine Conflicts of interest- None

Clinical Update: Infectious Diseases

- Recent victories
- Community-acquired pneumonia
- Short course antibiotics
- ID specialists as surgeons
- F. necrophorum pharyngitis
- VZV role in Giant Cell Arteritis (GCA)
- Clostridium difficile infection
- Stewardship

RECENT VICTORIES Disease eradication: Smallpox (done) #2: Guinea worm vs polio Whitehouse call to action on Antibiotic **Stewardship**


- Antibiotic pipeline: Surging
- Hepatitis C & HIV progress report

President Jimmy Carter, August 21, 2015:

"My greatest hope is that the last guinea worm will die before I do"

PATHOGEN ERADICATION

Year	Countries	Cases
POLIO		
1988	125	600,000
7/30/15	10	46
DRUNC	ULIASIS	
2006	20	3,500,000
9/20/15	4	11(-99.97%)
		-

Guinea Worm 2006: 3,500,000 cases 2015: 15 cases to 10/1/2015

The Next Epidemic-Lessons from Ebola

Bill Gates NEJM 3/19/15

Issue: Prepare for epidemic that could kill > 10 mil

Examples: Flu-1918; HIV, SARS

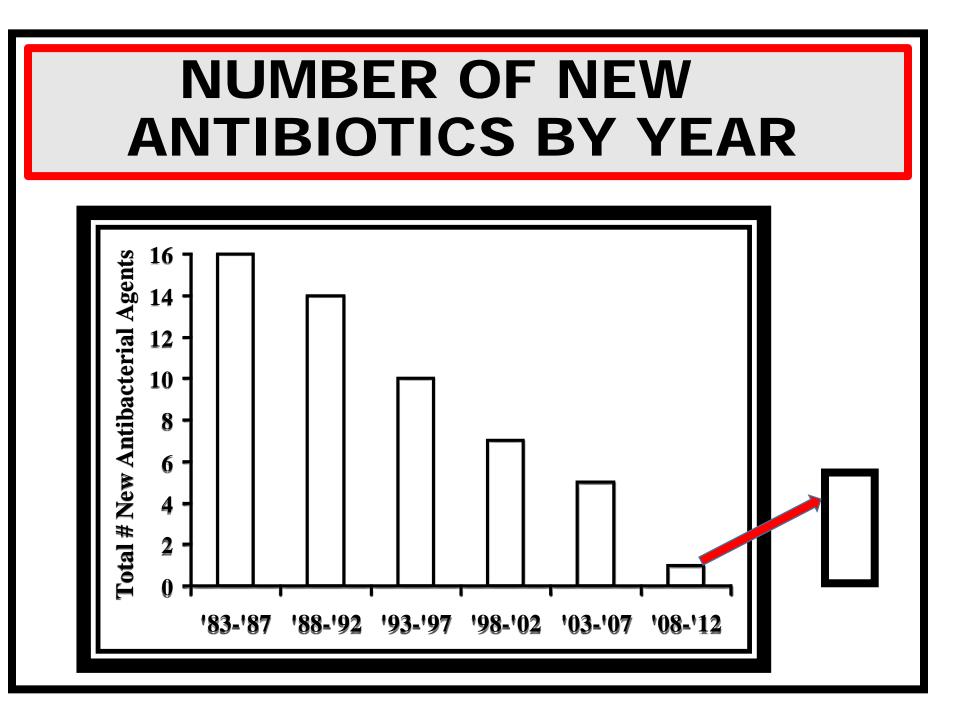
Precedent: War – NATO

<u>Last example of preparing for pandemic</u>: Dark Winter- Smallpox (Inglesby T CID; 2002 34:972)

<u>Recommended components</u>: 1) Health systems; 2)Surveillance; 3)Trained respondants; 4) Good data; 5) Diagnostics, vaccines, drugs

Greatest current threat: Influenza

Call to Action for Human Health Stewardship


* * * *

* * * *

FORUM ON ANTIBIOTIC STEWARDSHIP

JUNE 2, 2015

<u>Hepatitis C</u>: Test →Treat → Cure

Pub-Med publications 1/1/14-10/6/15: 8,389

<u>HIV</u>: New WHO Guidelines

ART for all w/HIV; PrEP for all at risk

Community-acquired pneumonia

 Current concepts appear antiquated: Needs a re-run for teaching, diagnostics; Empiric vs pathogen-directed antibiotics
? Management: Can we trump the robust Medicare data?

COMMUNITY-ACQUIRED PNEUMONIA Jain S et al, NEJM 2015;373:415 Micro: Sputum, bronch, urine ag, CDC-PCR **Results: Any pathogen:** 38% Strep. pneumoniae : 5% **Atypicals (all 3):** 4% **Bacteria**: 11% Virus / Rhinovirus: 23% / 9% **<u>Conclusion</u>**: Despite extensive current tests, no pathogen in 62% cases & viruses dominated

Yield of S. pneumoniae

Total yield: 115/2,259 cases (5%) Blood culture: 26/2070 (1%) Urine antigen: 56/1923 (3%) Sputum culture or PCR: 8/267 (3%) **BAL Culture: 3/83 (4%)** More than one specimen source: 21/2259 (1%)

RECOVERY RATES OF *S. PNEUMONIAE* IN SPUTUM FROM ADULTS WITH CAP

Source	Pts	%	Source	Pts	%	
Bullowa, '37	4416	81%	Aubertin '87	247	12%	
Fiala, '69	193	55%	Marrie '87	301	9%	
Moore, '71	144	47%	Levy '88	116	26%	
Fekety, '71	100	62%	Bates '89	53	6%	
Sullivan, '72	292	35%	Marrie '89	719	6%	
Dorff, '73	148	53%	Fang '90	359	15%	
McFarl, '82	127	76%	Farr '91	245	18%	
Klimek, '83	204	36%	Oldach '92	424	16%	
Dans, '84	147	40%	File 2010*	1240	11%	
Brit Tho Soc'87	433	42%				
Holmberg, '87	147	39%	Medicare 200	5-33, <mark>0</mark> 0	0 6%	
Woodhead, '87	236	36%				
*File T Ceftaroline trial JAC 2011; 66: Suppl 3: iii19						

ANTIBIOTIC SELECTION FOR CAP (Bratzler D, CID 2008;47: Suppl 3; S193)

Method: Retrospective analysis 27,330 patients >65 yrs hospitalized with CAP 1998-9. Analysis based on PSIadjusted mortality correlated with drug class & reported as OR for 30 day mortality vs 3rd gen ceph

Results Drug	PSI II/III	IV/V	P value
Fluorquinolone	0.9	0.7	0.001
Ceph/macrolide	0.9	0.7	<0.001

Timing: Significant Mortality **†** with >4 hr abx delay

Rapid diagnostics & procalcitonin to inform abx decisions (Gilbert D Diag Micro & Inf Dis (in press)

<u>Method</u>: Trial-Non-blinded, cluster randomized of CAP diagnostics at 480 bed hospital.

Standard tests: Blood/sputum culture, urine AG,

nasal PCR-SP/S.aureus, FilmArray, procalcitonin

Results: 59 evaluab	Procalcitonin	
Total w/pathogen:46		
S. pneumoniae		
Virus only	18(31%)	Virus only-0.2 ng/mL
Bacteria only	14(24%)	Bacteria-6-10ng/mL

FilmArray- RESPIRATORY PANEL					
	Sensitivity	Specificity			
Influenza	100%	>99%			
Paraflu 1-3	87-100%	99.8%			
Rhinovirus	96%	100%			
Metapneumo	100%	100%			
Adenovirus	90%	98%			
Coronavirus	96%	99%			
RSV	100%	89%			
2 "Atypicals"	> 99%	> 99%			
B. pertussis	100%	100%			
<i>S. pneumoniae</i> Not reported-FDA ruling					
Results: <60 minutes; Cost: \$300-500/test (?)					
Detects: <i>M pneumo, C pneumo</i> , pertussis- 12%					
Fails: <i>S pneumo,</i>	Fails: <i>S pneumo, H flu,</i> Legionella, <i>S aureus</i> , GNB				

Procalcitonin for RTI decisions (Mitsuma SF CID 2013; 56:996)

Massagas Procalcitania		L			
IV	Messages-Procalcitonin *RTIs: N=4221		When t	o start o	•
	Best use:When to stop CAP/HAP			PROCAL	CONTROL
			САР	90%	99%
	Bronchitis, AECB, URI		VAP	99%	100%
	When to start		BRON-	24%	66%
	*Interpretation:		CHITIS		
	Start:>0.25 ug/mL Stop<0.1 ug/mL		COPD	48%	73%
			URI	15%	48%
		Ľ			

PNEUMOCOCCAL VACCINE: CAPiTA Trial (Bonten MJM NEJM 2015;372:1114)

Method: Randomized, placebo controlled trial of Prevnar 13 in 84,496 persons >65 yrs; Netherlands

Results	Placebo	PVC13	Dif
	n=42,256	n=42,240	
S. pneumo CAP	144	100	- 30%
Invasive pneumo	28	7	- 75%
CAP-any pathogen	787	747	- 9%

Problem: Trial in Netherlands where there is no pneumococcal vaccine policy or "herd immunity"

Concerns about CAPiTA as a trial to drive vaccine strategies in the US

<u>The risk for pneumococcal infection-largely driven by vaccine</u> policy with children as major vectors of pneumococcal infections in adults.

<u>PREVNAR 7:</u> great impact on rates of pneumococcal carriage & invasive infection in vaccinated children, and "herd immunity" in adults

<u>Conclusion</u>: 1. PREVNAR 13 makes sense for peds in US & peds & adults in Netherlands (no national ped vaccine policy)

3. PPV23 (only) makes sense for US adults >65 for cost & benefit

What can we conclude about CAP in the US?

<u>CDC (Jain)</u>:Most comprehensive US CAP study in decades

<u>Quality</u>: Most specimens for culture- collected post abx; PCR - CDC "home brews" but totality of quality is robust. <u>Conclusions</u>:

- * We do not know etiology in most US cases
- * S. pneumoniae accounted for 5% & "atypicals" for 4%

* We should not base CAP guidance on foreign CAP data due to variations in *S. pneumoniae* vaccine policies.

* Viral pneumonia (non-influenza) is likely important.

* Treatment guidance largely from Medicare data

Randomized Trial of Rapid Multiplex PCRbased Blood Culture ID & Susceptibility Banerjee R R CID 2015;61:1071

Method: Comparison of 1) Standard BC; 2) Rapid mPCR (FilmArray); 3) Rapid mPCR + real time abx stewardship.

Results:	Standard	rmPCR	+Stewardship
	N=207	N=198	N=212
Time to ID	22.3 hr	1.3 hr*	1.3 hr*
Abx – contaminants	25%	11%*	8%*
Time to path-specific abx	34hr	38hr	21hr*

Conclusion: rmPCR & stewardship achieved reduced abx duration & time to pathogen-specific antibiotic treatment

Editorial comment: A. Caliendo (CID 2015;61:10810)

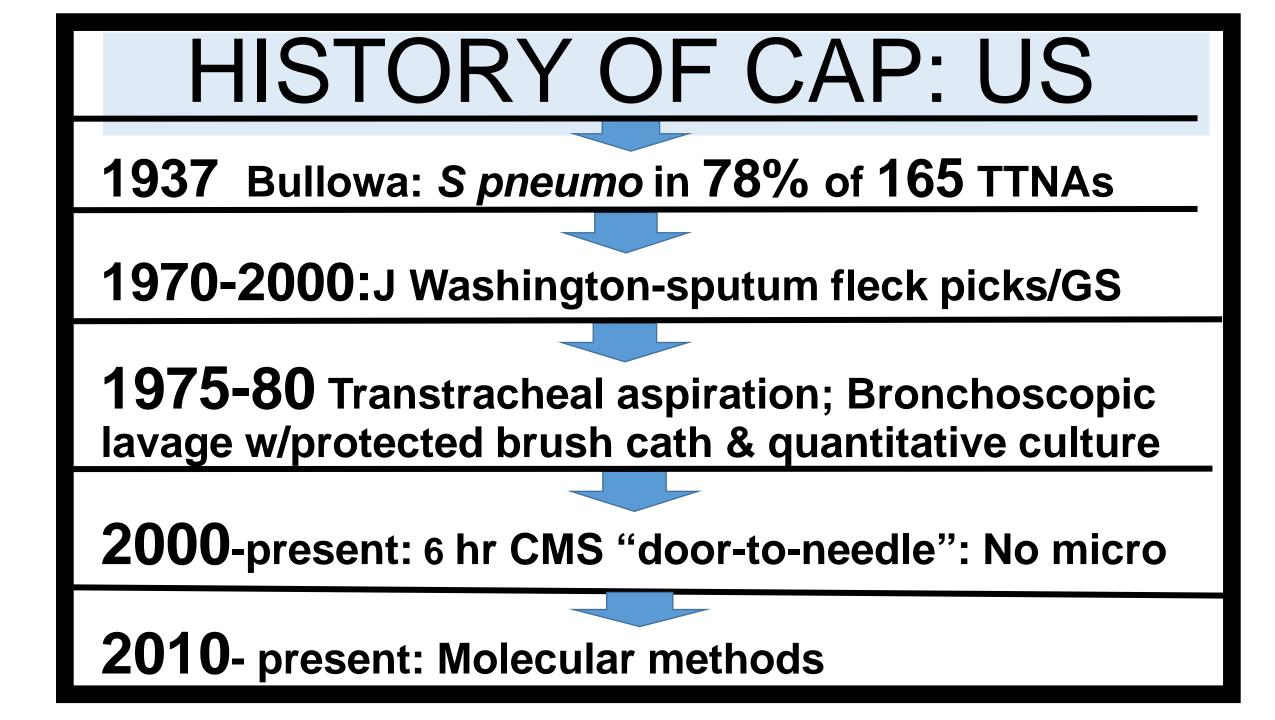
Review of the Mayo Clinic trial

- First randomized trial rmPCR to ID blood culture isolates
- Trial design- excellent
- Demonstrated significant reduction in antibiotic consumption and improved pathogen-specific treatment

Concerns

- This technology is <u>very</u> expensive
- Mayo Clinic may be atypical- "templated comments", routine MALDI-TOF & required ID stewardship available 24/7
- The rmPCR test IDs 80% of BC isolates-also need routine BC
- * No significant impact on mortality, cost of care or LOS

CAP: COUNTRY COMPARISONS Using similar diagnostic methods US **Finland** Sweden Norway Country No. patients 2,259 267 184 **49 Pos-pathogen** 38% 92% 67% 63% S. pneumoniae 57% 5% 30% 38% **Atypical agents** 20% 4% 16% 9% **Bacteria-any** 9% 49% 82% 63% **Virus-only** 21% 15% 9% 29%


9%

1%

10%

7%

Rhinovirus-only

British Thoracic Society: CAP Bundle Lim WS et al Thorax 7/21, 2015

Bundle: *Chest X-ray within 4 hours

- * O2 assessment with appropriate Rx * Assess: CURB-65
- * Antibiotics within 4 hours <u>Evaluation</u>: Bundle started Oct 2012 assessment of 14,962 CAP patients <u>Results</u>: Bundle use reduced mortality 8.8% vs 13.6%; OR 1.52 (p=0.03)

Duration of antibiotics

Contemporary use of abx is often or usually unjustified by indication and duration. (This is likely to be audited in the future). Vertebral Osteomyelitis: Treatment- 6 vs 12 weeks (Bernard L Lancet;2015;875) Issue: Guideline recommend antibiotics for 6 or "at least 12 weeks" without evidence for either <u>Method</u>: 71 center study – open label, randomized, microconfirmed osteomyelitis randomized to antibiotics - 6 vs 12 wks w/providers choice of agent. End point-cure rate at one year.

<u>Results</u> :	6 wks (N=176)	12 wks(N=175)
Cured and alive	159 (91%)	151 (92%)
Device infection	2 (1%)	3 (1%)

Conclusion:1) 6 wks- long enough; 2) Consortium -powerful

Messages from the vertebral osteo trial beyond 6 vs 12 weeks.

<u>IV vs PO</u>: Median duration of IV treatment: 14 days; outcome same for comparison of <1 wk IV vs longer.

<u>Note</u>: All PO may be OK and 6 wks may be too long.

<u>Consortium</u>: The trial was done in a French consortium with funding from the French Ministry of Health. The US seriously needs a comparable system to answer important questions ir the context of "the resistance crisis"

SHORT COURSE ABX-Cochrane Reviews

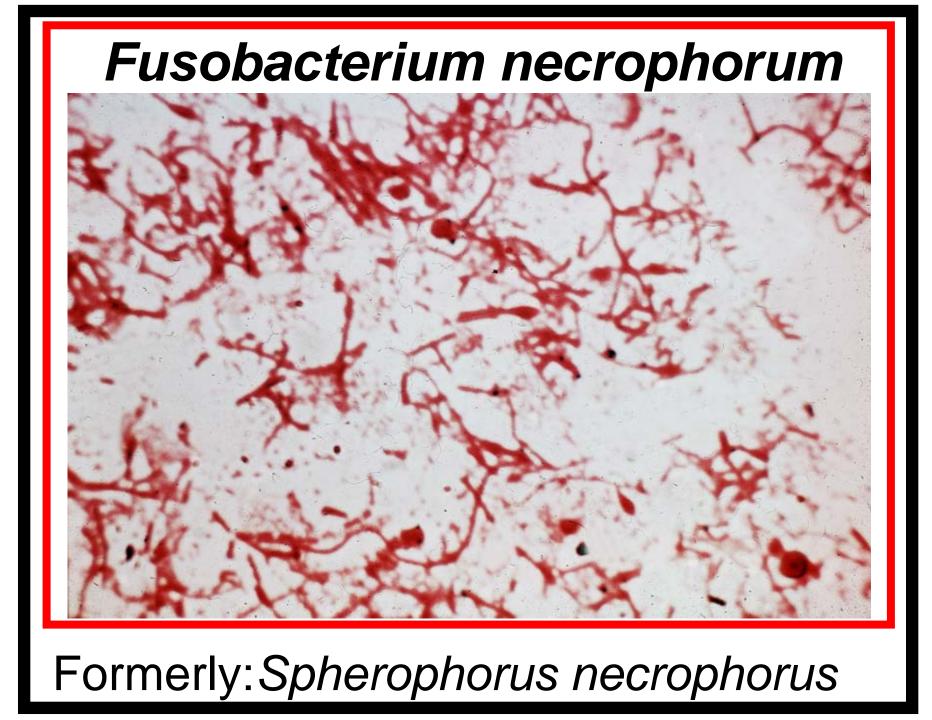
Diagnosis	Short	Long	Νο	Result
CAP	5	7	1,929	ND
САР	3	8	119	ND
HAP	7	10-15	1,705	ND
VAP	8	15	197	ND
Pyelo	7	14	126	ND
AECB	<u><</u> 5	<u>></u> 7	3,532	ND
UTI	1 dose	7	1,622	INF*

*Single dose inferior for pregnant women

Fusobacterium nucleatum pharyngitis

New cause of pharyngitis ? (as well as Lemierre Disease)

Fusobacterium necrophorum Pharyngitis (Centor RM Ann Intern Med 2015;162:241)


Method: Students with acute sore throat at UAB health clinic

- → Throat swabs for PCR detection of *F. necrophorum, M.*
- . pneumoniae & beta-strep (A & C/G); N=312 and 180 controls

<u>Results:</u>	F. necroph	Gr A strep	M. pneumo
Symptomatic	64 (21%)	32 (10%)	6 (2%)
Asymptomatic	17 (9%)	2 (1%)	0

<u>Conclusion</u>: *F necrophorum* is more common than Gr A strep

in pharyngitis and clinically similar

Dr. Centor response to queries

1. Is PCR test for *F. nucleatum* available to clinicians? <u>Answer</u>: No. "I want a rapid test".

2. Is penicillin the preferred treatment? <u>Answer</u>: We do not have good treatment studies, but generally use a regimen that is standard for Lemierre disease: metronidazole + penicillin or clindamycin

3. Do the "Centor criteria" for strep pharyngitis apply to *F. necrophorum* pharyngitis?

<u>Answer</u>: Clinical features are similar. We are planning that study

Medical Management of Appendicitis:

? New role for ID physicians

Antibiotic therapy vs Surgery for uncomplicated appendicitis (Salkinen P; JAMA 2015;313:2340)

 <u>Background</u>: History & NOTA Trial (DiSaverio S Ann Surg 2014;260:109) questioned uniform need for surgery
<u>Methods</u>: Multicenter trial in Finland of patients age 18-60 yrs with CT-confirmed appendicitis randomized to
1. Early appendectomy vs

2. Antibiotic treatment: ertapenem-3d, then po levoflox/metronidazole-7d

Appendicitis: Medical vs Surgical treatment (Salminen P JAMA; 2015;313:2340)

Results	Surgery	Abx
	N=273	N=257
Complications	57 (21%)	8 (3%)
Surgical site infection	24 (9%)	_
Recurrent appendicitis	-	55(21%)
"Sick leave" (median)	19 days	7 days

Varicella-zoster as cause of Giant-cell arteritis (GCA)

Supporting data are robust; treatable with acyclovir-?

Varicella-zoster & Giant Cell Arteritis (Gilden D et al Neurology 2015;84:1948)

<u>Method</u>: GCA-positive temporal artery biopsies (50 sections) examined by immunohistochemistry for VZV. <u>Results</u>: VZV antigen in 61/82 (74%) cases vs 1/13 (8%) controls.

Issues (Kennedy GE Neurology 2015; 84:1918)

- 1) Causal?- Probably; VZV triggers immunopathology
- 2) Practical issue of 50 sections/bx- recommends >10
- 3) Treatment? Acyclovir + steroids VZV vasculopathy

Successful treatment of GCA & Takayasu arteritis: Case report (Gilden D. Neurology 2015;72:943)

<u>History</u>: 70+ year old women with biopsy-proven GCA complicated by arm pain (pulseless), gangrene left hand; CT angio: <u>extensive large artery disease</u>. Course: She became <u>wasted</u> (30.8 kg), <u>unresponsive to steroids (20 mg/D)</u>; arterial biopsies showed <u>VZV in GCA-pos temporal arteries + other large arteries (14/17</u> sections).

<u>Treatment</u>: <u>IV acyclovir</u> 15 mg/kg tid x 14 days; then po valacyclovir

<u>Response: "dramatic"</u> with energy, appetite, 10 kg weight gain, return of pulses.

Clostridium difficile infection (CDI)

New priority, new treatment, new epidemiology, ? First use of microbiome Burden of *C. difficile* infection in US Lessa FC et al, N Engl J Med 2015;372:825

Method: Lab based surveillance in 10 US regions (pop 500,000, 2011) Results: <u>Total cases</u>: 15,461; projected: 453,000/year

*Healthcare-associated: 293,000 (66%)

* <u>Community-onset</u>: 159,000; 82% had contact with Healthcare System

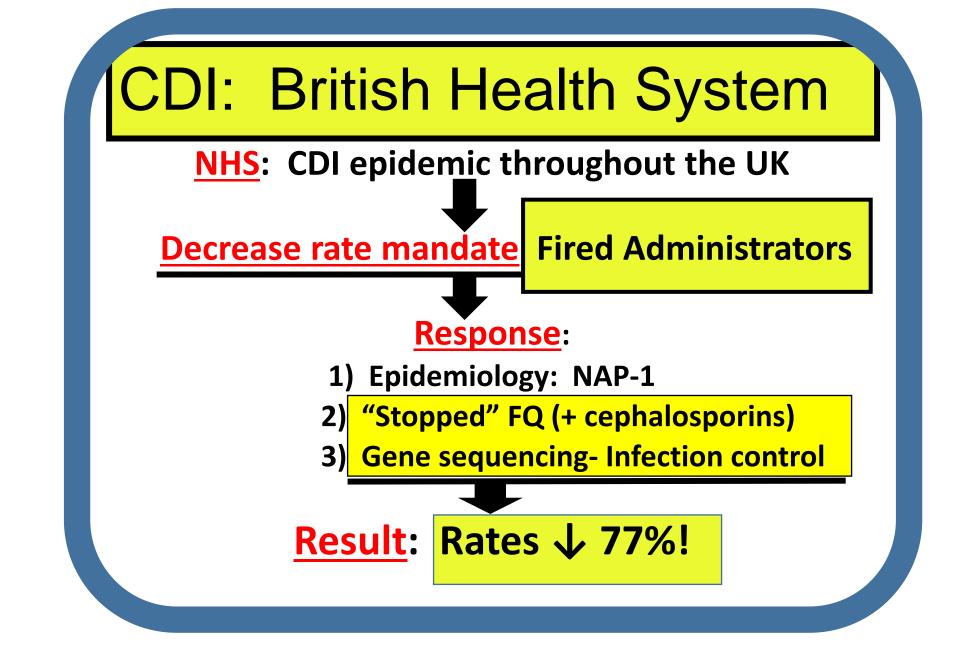
*<u>Relapse rate</u>: 83,000 (18%)

*<u>Mortality</u>: 29,000 (6%)

*Dominant strain: NAP 1- 31% HCA; 19% CA

Stool transplant for relapsing CDI (Cammarota G Alim Pharm Ther 2015;41:835)

First Randomized trial!


Method: Recurrent CDI x >1, positive toxin assay, plus >3 watery stools/d randomized to:

- Colonoscopy insertion of donor stool vs.
- Oral vancomycin 125 mg qid x 10 days, then pulse oral vanco x 3 weeks

<u>Cure rates</u>: Oral vanco 5/19 (26%)

Stool tx 18/20 (90%)

Study stopped prematurely (question answered)

C. difficile testing -UK

Source: Planche T et al Lancet Infect Dis 2013;13:936

Method: Test 4 univ hospitals, 6,522 diarrheal stools

Tested 3 targets-1) Toxin (sensitive EIA,cytotoxin);2) C dif

(GDH EIA, cytotoxin culture) & 3) toxin gene (PCR)

Results correlated w/lab (mortality,WBC,albumin,colitis)

Results: Best test based on clinical correlates- Cytotoxin

Classification: 1) "C difficile infection"-cytotoxin pos

2)"C difficile excretor": cytotoxin neg & (PCR or cytotoxin culture +)

UK DH: Best practice guidance for diagnosis & reporting of C difficile Diagnosis: Two test combination: Toxin, Toxin gene, microbe Screening test: PCR (toxin gene) or GDH (*C. difficile*) Second test: sensitive toxin EIA or cytotoxin (toxin) Reporting: 1) (GDH or PCR pos) plus (sensitive toxin EIA or cytotoxin): PPV 91%; Mandatory reporting 2) (GDH EIA or PCR pos) plus negative stool toxin: "C difficile excretor", Not reported, but transmission potential 3) (GDH & toxin EIA) neg: NPV-99%; Not reported

C. difficile: Miscellaneous issues

1) Zacharioudakis IM. Am J Gastro 215;110:381 : Pooled prevalence of 8,725 hospitalized patients showed 8.1% were colonized with *C. diff* on admission. Relative risk of CDI was 5.9 vs controls

2) Aroniadis OC. Clin Gastro 2015 (in press): Stool transplant in 17 patients with severe and complicated CDI showed 15 achieved cure and 2 relapsed

3) Johnson S CID 2014;59:345: Oral vancomycin was superior to oral metronidazole (and tolevamer); N=563; Cure rate 71% vs 81% (p=0.06)

4. Whitney R Infect Control Hosp Epid 2015; 36:217: Review of 120 requests for *C diff* PCR showed 50% had received laxatives within 48 hrs.

C. difficile produces unique odor of P-cresol; Dog's olfactory sense-300x that of humans (Bomers MK. BMJ 2012;345:e7396)

Stools	Positive	Negative
Patient stools	30/30 (100%)	270/270 (100%)
Ward	25/30 (83%)	265/270 (98%)

Antibiotic Stewardship

Justified priority

Issues are how to do it and how to measure it

Assessment of empirical antibiotic use (Braylkov N Lancet Infect Dis 2014; 14:1220)

<u>Method</u>: Chart review – inpatients on abx; 6 diverse hospitals; analysis: broadness of spectrum (graded 1-4), lab/culture results, site of infection etc. Candidate cases = 1200; ID-trained physicians did reviews and judgements <u>Results</u>: Afebrile and normal WBC: 30%

> Appropriate cultures : 59%; 58% neg Broad spectrum agent(s): 50-90% Antibiotics narrowed (with micro report): 22%

<u>Conclusion</u>: Suggests big challenge for stewardship.

Regulating antibiotics in era of resistance S Podolsky, J Powers Ann Intern Med 2015;163:386

<u>1950s</u>: Abx approved by in vitro tests & safety (not efficacy) Concern for a market out of control led by Drs Finland & Dowling **<u>1959:Kefauver hearings</u>**: Required well-controlled trials 1969: FDA review- removal of Panalba after approval based on "totality of evidence". New standard was randomized controlled clinical trials. Modern era: The anguish over resistance has led some to plead for a lesser standard in an effort to get new antibiotics. Examples of drugs with concerns for FDA-approval based on what some perceive with possible increased mortality or decreased efficacy: Daptomycin, Tigecycline, Doripenem, Telavancin & Ceftazidime/avibactam

Stewardship: Rapidly evolving priority

- CMS considering requiring Stewardship program to be part of the Hospital Safety Network (like infect control)
- If so, need "playbook" of activities to define "compliant" to implement various elements and how to evaluate.
- How measure : example is *C diff* rates (already reported)
- Need antibiotic use measure : Ron Polk's Antibiotic Administration Ratio: what is expected use vs what is actually used

Short course Antimicrobial Therapy for Intra-abdominal Infection (Sawyer RG et al NEJM 2015;72;1996)

Issue: Duration of antibiotics after surgery for complicated IAS **Method: Complicated IAI with source** control randomized to: 1) Abx until 2 days after resolution of: fever, **†** WBC, ileus, maximum 10 days Vs 2) fixed 4 day abx course **Outcome: SSI, IAI or death at 30 days**

Short course antimicrobial therapy after Surgery for intra-abdominal infection				
Results	Controls N=266	4 days N=258		
Primary outcome	22%	22%		
Days of Antibiotics(mean)	8.0	4.0*		
Surgical site infection	15	10*		
Intra-abdominal infection	15	11*		
*P< 0.01; Sawyer RG NEJM 2015;372:1996				

Bundled intervention to prevent SSI with cardiac, hip or knee surgery (Schweizer ML JAMA 2015;313:2162 & editorial 2131) Issue: S. aureus colonization increases risk of SSI Plan: Pre-op nasal culture **>** S. aureus **>** nasal mupirocin + daily chlorhexidine baths; pre-op abx: Cefazolin/cefuroxime; MRSA-Vanco **Results: Pre-intervention vs post intervention with** 42,534 ops in 20 hospitals. OR for complex S. aureus SSI 0.58 (42% reduction) With full compliance 0.26 (74% reduction)

Thanks to colleagues for help

David Gilbert Dan Musher **Brad Spellberg Arjun Srinivasin Karen Carroll Anna Thorner** Mark Wilcox

Charlotte Gaydos Sarah Cosgrove Eliot Godofsky Dale Bratzler Tom File Cited Authors